Coupled Coherent States

Code parallelisation and optimisation

Index

- 1. Introduction
- 2. Serial execution
- 3. Runge Kutta parallelisation
- 4. Step parallelisation
- 5. Future directions

CCS code

The quantum dynamics simulations of the CCS code have O(n^2) complexity.

But they still take large amounts of time to run. **Can we do better?**

Parallelisation

Ideally: $T_N = T_1 / N$

But in practice: $T_N = T_1 (P + 1/N \times (1-P))$ (Amdahl's law)

Aim workload balance and minimize communications

CCS code

• Generate trajectories

- Monte Carlo algorithm (embarrassingly parallel).
- Takes less time and once generated they can be used for multiple propagations
- Propagate trajectories
 - Runge Kutta 45 method
 - Takes most time, challenging to parallelise

Serial Profiling

(32 cs, 20 u.t.)	Time (pgi -O3)
Generate trj. serial	18.429s
Propagate trj. serial	8.85s
Propagate serial (not hermitian)	11.8s <mark>(x0.75)</mark>
Propagate (save merged)	11.317s
Propagate further optimized	???

Generate trajectories

Propagate trajectories

Runge kutta Cash-Karp method

Good load balance, 8 communications of a vector of ncs double complex.

But don't scales further than 5 processes!!

Expected time: TN = T1 $(1/6 + 1/N \times 5/6)$

RK45 parallelisation

In each step ...

Good balance if not consider the Hermitian properties. Lots of communications! Expected time:

Step parallelisation

Further work

- Combine both parallelisations
- PLASMA LA library (fast for small matrices) +
- Parallel Hermitian calculations

Further scaling

Remove Runge-Kutta 45 synchronizations

exit condition & save & error	Step11	Step3_1	Step4 1	
	Step1 2	Step3 2	Step4 2	ŗ
	Step1 3	Step3 3	Step4 3	& en
	Step1 4	Step3 4	Step4 4	save
	Step1 5	Step3 5	Step4 5	n & s
	Step1 6	Step3 6	Step4 6	Iditio
	Step21	Step2 4		t con
	Step2 2	Step2 5		exi
	Step2 3	Step5 6	1	